一本道

张雪

发布时间:2025-06-13浏览次数:16

姓名:张雪

职称:教授

专业:数学

所属二级学科:运筹学与控制论

研究方向:微分方程与动力系统、生物数学

E-mail: [email protected]

电话:无

  

  

个人简历:张雪,一本道 教授,博士生导师。长期从事微分方程及生物数学的相关研究工作,包括种群动力学、传染病动力学,以及融合生物大数据样本的数学模型研究。在Siam Journal in Applied Mathematics, Journal of Mathematical BiologyJournal of Dynamics and Differential EquationsBulletin of Mathematical BiologyMathematical BiosciencesNonlinear Dynamics国内外重要学术期刊上发表论文30余篇,在Springer合作出版专著两部。作为项目负责人先后主持国家自然科学基金项目以及辽宁省科学基金项目。

  

近年来承担的主要项目(五项):

[1] 蜱媒病传播动力学分析及风险预测,国家自然科学基金面上项目(12171074)2022.1-2025.12,主持

[2] 黑吉辽蒙地区新布尼亚病毒传播的数学建模与研究,辽宁省自然科学基金面上项目(2024-MSBA-46)2024.9.1-2026.8.31,主持

[3] 面向东北三省研究生培养的生物数学学术共同体建设研究,辽宁省研究生教育教学改革研究项目(LNYJG2024086)2024.01-2025.12,主持

[4] 森林脑炎的动力学建模与分析,国家自然科学基金青年项目(11701072)2018.1-2020.12,主持

[5] 混杂生物数学模型的研究与应用,辽宁省博士启动基金(20131026)2013.1.1-2015.12.31,主持

  

近年来发表的代表性论文(十篇):

[1]X. Zhang, J. Wu, Tick-borne pathogens co-infection by co-feeding on incompetent hosts: Global convergence and impact of developmental delay, SIAM Journal on Applied Mathematics, 2024, 84(3): 1060-1078

[2]N. Yu, X. Zhang, Complex dynamics in tick-borne disease transmission: A Filippov-type control strategy model with multiple time delays, Chaos, Solitons and Fractals, 2024, 189: 115673

[3] X. Zhang, J. Wu, Co-feeding transmission leads to bi-stability of tick-borne disease spread dynamics, Proceeding of the American Mathematical Society, 2024, 152(5), 2169-2184

[4]X. Zhang, F. Scarabel, K. Murty, J. Wu, Renewal equations for delayed population behaviour adaptation coupled with disease transmission dynamics: A mechanism for multiple waves of emerging infections, Mathematical Biosciences, 2023,365, 109068

[5]X. Zhang, J. Wu, A coupled algebraic-delay differential system modeling tick-host interactive behavioural dynamics and multi-stability, Journal of Mathematical Biology, 2023, 86, 42

[6]X. Zhang, F. Scarabel, X. Wang, J. Wu, Global continuation of periodic oscillations to a diapause rhythm, Journal of Dynamics and Differential Equations, 2022, 34, 2819-2839

[7]J. Lin, X. Zhang, Stability and bifurcation analysis of a discrete severe fever with thrombocytopenia syndrome model, International Journal of Bifurcation and Chaos, 2022, 32(07), 2250093

[8]B. Sun, K. O. Okosun, X. Zhang, Stability analysis and optimal control of a Lyme disease model with insecticides spraying and vaccination, Journal of Biological Systems, 2022, 30(03), 631-645

[9]X. Zhang, B. Sun, Y. Lou, Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches, Journal of Mathematical Biology, 2021, 82(4), 27

[10]X. Zhang, J. Wu, Implications of vector attachment and host grooming behaviour for vector population dynamics and distribution of vectors on their hosts, Applied Mathematical Modelling, 2020, 81,1-15