姓名:朱和贵
职称:教授
专业:数学
所属二级学科:应用数学
研究方向:智能安全、深度学习、大数据统计建模
E-mail: [email protected]
个人简历:朱和贵,教授, 博士生导师,沈阳市数学会副理事长,中国科学院沈阳计算技术研究所博士后。主持国家自然科学基金面上项目、国家重点研发计划科技部重大专项子课题、中国博士后面上基金、辽宁省自然科学基金、广东省基础与应用基础联合基金、中央高校基本科研业务费、企事业单位等项目。在ICCV, IEEE Transactions on Multimedia, IEEE Transactions on Industrial Informatics, Pattern Recognition, Neural Networks, Information Sciences, Expert Systems With Applications, Engineering applications of artificial intelligence, Applied Soft Computing, Applied Mathematical Modelling, Nonlinear Dynamics, Computers & Security, Neurocomputing, International Journal of Bifurcation and Chaos, Mathmaticas and Computers in Simulation, Journal of Information Security and Applications等国内外杂志发表SCI、EI论文50余篇。2023年,“多场景下生物特征增强与身份认证统一平台关键技术及其应用”获河北省科技进步三等奖。2018年,获国家自然科学基金委信息学部遥感影像稀疏表征与智能处理算法大赛三等奖。获沈阳市优秀研究生导师(2022),一本道 张捷迁奖教金(2023),一本道 本科毕业论文优秀指导教师荣誉称号(2019,2021,2023)。指导本科生获第十六届“挑战杯”辽宁省大学生课外学术科技作品竞赛(七星级)省一等奖1项;全国大学生数学建模竞赛(六星级)国家二等奖10余项;美国大学生数学建模国际一等奖(五星级)10余项;国家级大创项目优秀1项(学生获研究生推免资格)、良好7项。培养的研究生被华为、字节跳动、商汤科技、腾讯、海康威视、美团、京东、电信、三一重工等国内著名企业录用并获得了很高的评价和赞赏。
近年来的主要研究工作:
围绕深度网络模型智能安全和深度学习鲁棒性建模等领域取得了扎实的工作积累,相关成果发表在IEEE Transactions on Multimedia, IEEE Transactions on Industrial Informatics, Neural Networks, Pattern Recognition, Engineering applications of artificial intelligence, Information Sciences, Expert Systems With Applications, Applied Soft Computing, Applied Mathematical Modelling, Computers & Security, Neurocomputing, Mathematics and Computers in Simulation, Journal of Information Security and Applications 等国际知名期刊和ICCV等顶级国际会议上。
近年来承担的主要项目(五项):
1.国家自然科学基金面上项目, 基于差异化对抗样本的深度网络模型安全评估与防护, 2025/01-2028/12, 主持
2.广东省基础与应用基础研究项目, 可迁移多模态异常驾驶行为智能检测方法研究, 2023/11-2026/10, 主持
3.科技成果转化, 一种基于深度学习的语义图像分割方法,2022/06-2024/05, 主持
4.科技部重点研发计划子课题, 海管检测数据综合处理与缺陷评估关键技术研究与软件开发, 2017/07-2021/06, 主持
5.辽宁省自然科学基金, 融合加密的图像信息隐藏算法研究,2020/05-2022/04, 主持
近年来发表的代表性论文(十篇):
[1] Zhu H, Jia Y, Yan Y, et al. Improving transferability of adversarial examples via statistical attribution-based attacks[J]. Neural Networks, 2025, 187:107341.
[2] Zhu H, Gao Z, Wang J, et al. Few-shot Fine-grained Image Classification via Multi-Frequency Neighborhood and Double-cross Modulation[J]. IEEE Transactions on Multimedia, 2024,26:10264-10278
[3] Zhu H, Ni J, Yang X, et al. CMIGNet: Cross-Modal Inverse Guidance Network for RGB-Depth salient object detection[J]Pattern Recognition,2024,155:110693
[4] Liu C, Zhu H, Ren Y. A Novel Intelligent Forecasting Framework for Quarterly or Monthly Energy Consumption[J].IEEE Transactions On Industrial Informatics, 2024,20(3): 5352-5363
[5] Zhu H, Ren Y, Liu C et al. Frequency-based methods for improving the imperceptibility and transferability of adversarial examples[J]Applied Soft Computing, 2024, 150:111088
[6] Ren Y, Zhu H, liu C et al. Efficient polar coordinates attack with adaptive activation strategy[J]. Expert Systems With Applications, 2024, 249:123850
[7] Zhu H, Ge J, He J,et al. A non-degenerate chaotic bits XOR system with application in image encryption[J]. Mathematics and Computers in Simulation. 2024, 219:231-250.
[8] Zhu H, Ren Yu, Sui X, et al. Boosting Adversarial Transferability via Gradient Relevance Attack[C]. International Conference on Computer Vision2023, ICCV2023.
[9] Zhu H, Zheng H, Zhu Y, et al. Boosting the transferability of adversarial attacks with adaptive points selecting in temporal neighborhood[J]. Information Sciences, 2023, 641: 119081.
[10] Zhu H, Sui X, Ren Y, et al. Boosting transferability of targeted adversarial examples with non-robust feature alignment[J]. Expert Systems with Applications, 2023, 227: 120248.